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THE COMPUTATION OF STRESS INTENSITY FACTORS
BY A SPECIAL FINITE ELEMENT TECHNIQUE

P. F. WALSHt

Division of Building Research, CSIRO, Melbourne, Australia

Abstract-A special finite element method, for the computation of stress intensity factors, is presented in this
paper. The special finite element consists of two regions. The stress and displacement distribution in the inner
region is defined in terms of the singular stress field associated with the notch tip. The outer region of the special
element contains conventional finite elements that are constrained to satisfy certain equilibrium and compati­
bility conditions on the interface between the two regions. The method is quite efficient and should allow the
solution of problems outside the scope of present techniques. The validity of the procedure is confirmed by
comparison with published solutions for some simple plane stress situations.

NOTATION

All matrices and column matrices are represented by a bold character. The transpose ofa matrix A is denoted
by AT. As a supplement to the symbols defined in the text the following notation has been adopted.
A transformation matrix
B transformation matrix from generalized to nodal displacements
P force column matrix (various subscripts as discussed in text)
U displacement column matrix (various subscripts as discussed in text)
Ux x-displacement
U, y-displacement
r distance from crack tip
() angle from x axis

1. INTRODUCTION

FRACTURE mechanics is concerned with the phenomenon of structural failure by catas­
trophic crack propagation at average stresses well below the yield strength, It has been
shown by Leicester [5], that this problem arises not only in the sophisticated alloys used
in aerospace structures, but also in simple notched timber beams.

One approach to the prediction, and hence prevention of such failures, is based on
stress intensity factors which define the magnitude of the singularities in the stress field
which occur in a linear elastic analysis of a structural component with an infinitely sharp
notch, The currently available procedures, such as the collocation method, for the compu­
tation of stress intensity factors are restricted to problems involving uniform thickness
and elastic properties. The finite element method of analysis has none of these restrictions,
and moreover it is equally applicable to various notch angles. On the other hand, an
infinitely sharp notch cannot be represented by a finite element mesh. This condition
can be approached by using extremely small elements in the vicinity of the notch root but
only at the expense of computational efficiency.
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In this paper, a method will be presented which has all the advantages of the finite
element procedure in representing the structure. In the immediate vicinity of the notch,
a special element will be developed that incorporates the theoretically exact stress patterns
around the top of the notch. This region is then surrounded by a transition region to a
conventional finite element mesh. The validity ofthe approach is confirmed by comparison
with published solutions for some simple plane stress situations.

2. THEORY

The proposed special element consists of two regions as shown in Fig. 1. The stress
distribution in the inner region can be defined by the stress intensity factors and their
associated singular stress fields. The outer region consists of a conventional finite element
mesh that is constrained to satisfy certain compatibility and equilibrium conditions on the
interface between the two regions. The entire special element forms part of a larger finite
element mesh that is analysed in the conventional manner.
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FIG. I. General arrangement of special element.
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FIG. 2. Notation for plane strain singularities.
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The expressions for the stiffness matrix of the hybrid element will be derived with
particular reference to a sharp crack in an isotropic material which is subjected to plane
strain conditions. In the immediate vicinity of the crack tip, the stresses and strains can
then be defined by two stress intensity factors K 1and K n, and their corresponding singular
stress fields. With the notation shown in Fig. 2, these stress and displacement fields are
given by Paris and Sih [6], as,

Mode I

K( ()( . () . 3())
a = --cos- 1-sm- sm-

x (2nr)t 2 2 2

K ( () ( . () . 3())
ay = (2nr}t cos 2 1+sm 2sm 2

Mode 2

K 1 • () () 3()
Txy = --sm-cos-cos-

(2nr)t 2 2 2

az = v(ax+ay)

K 1( r )t ()( . 2 ())U = - - cos- 1-2v+sm -
x G 2n 2 2

U= K(!-)t sin ~(2-2V-COS2~).
y G 2n 2 2

K n . ()( () 3())
a = ---sm- 2+cos-cos-

x (2nr)t 2 2 2

K II • () () 3()
a = --sm-cos-cos-

y (2nr)t 2 2 2

K II ()( . () • 3())
T = --cos- 1- sm-sm-

xy (2nr)t 2 2 2

Kn(r)t. ()( 2())
Ux = 2G 2n sm 2 2-2v+cos 2

Kn(r)t ()( . 2())U = - - cos- -1+2v+sm - .
y 2G 2n 2 2

(1)

(2)

Although equations (1) and (2) are given for plane strain, the corresponding equations
for plane stress can be obtained by suitably modifying the elastic constants.

Now the displacement of any point in the inner region can be expressed as a function
of its position, the two stress intensity factors, K 1 and K n and the three components of
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rigid body displacement, D1 , D2 and D3 (see Fig. 2)

or in matrix form

Uxn

Uyn

1

o
o
1 (3)

U XY = MUs·

In equation (3) Uxl and Uyl are the displacements of the point for a unit value of K I

as given by equation (1). The column matrix Us contains the generalized "displacement"
quantities KI,Kn,Dl,D2,D3' It is convenient to introduce a column matrix, P~, of
generalized forces that correspond to the generalized displacements Us' A form of stiffness
matrix relating these two quantities can be derived in the following manner. Consider
the stresses produced by a unit value of the jth component of the Us matrix and evaluate
the work done as these stresses move through the displacement pattern produced by a
unit value of the ith component of Us' By adopting this result as the (i,j) element of a
matrix S., then P~ is defined by,

p~ = SsUs' (4)

Since several of the components of Us are simply rigid body displacements, many of the
terms in Ss will be simply zero. The evaluation of the non-zero terms in Ss can be carried
out by explicit or numerical integration along the boundary of the inner region.

For the outer region, the individual element stiffness matrices of the finite elements
may be summed to give an equation which relates nodal forces Pm and nodal displacements
Um at discrete points on the inner and outer boundaries of the outer region, i.e.

(5)

If the finite element mesh includes nodes that are not on either boundaries then the
displacements of such nodes can be eliminated by partial Gauss-Jordan elimination to
give equation (5).

In order to differentiate between the displacements and forces on the inner and outer
boundaries, the suffices i and 0 are introduced, i.e.

and

Um = [~:J

Pm = [=~J.
For the displacements of the finite element mesh to be compatible, at least at the

nodes, with the displacements of the inner region the nodal displacements U i must be
restricted to a system that can be defined in terms of Us' Compatibility on the inner
boundary, between nodes, is only approximately satisfied as the variation of the displace­
ment field on the edge of the inner region would be different from that along the edges
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of the outer, finite element, region. This approximation can be refined by increasing the
number ofnodes. Now ifthe coordinates ofthe nodes on the inner boundary are successively
substituted into equation (3) then the following matrix equation can be obtained.

U i = BUs· (6)

The nodal forces Pi may also be related to a system of generalized forces P; due to
deformations within the finite element mesh by the contragredient transformation

Equation (5) may now be modified to,

[Po] = AS Ar[Uo]
pIt m U

s s
where

(7)

(8)

(9)A = [~ :r}
Equilibrium then requires that the sum of the generalized forces due to deformation

of the inner region, P~, and due to deformation of the outer region P; is equal to the applied
load Ps (normally zero).

Thus,

or,

(10)

Where S is the stiffness matrix of the special element.
In the solution process the special element forms just one of the elements in a finite

element mesh. The degrees of freedom associated with the components of Us can be
conveniently treated as displacements of imaginary nodes within the hybrid element. The
solution of the entire problem then results in "displacement" of all the nodes and thus
includes the stress intensity factors.

3. VERIFICAnON

The accuracy of the proposed method for computing stress intensity factors depends
primarily on the number of nodes on the inner and outer boundaries. To a lesser extent,
the refinement of the finite element mesh that surrounds the hybrid element also affects
the accuracy of the result. By increasing the number of nodes in the special element and
in the surrounding mesh any desired accuracy should be possible.

So that a comparison may be carried out between the results of this method and the
results reported in the literature, three simple structural configurations were investigated:

(i) a double edge-notched plate in tension;
(ii) a single edge-notched plate in tension;

(iii) a single edge-notched plate in bending.
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The material was taken to be isotropic with J1 = 0·33, and plain stress conditions were
adopted. The three cases are shown in Fig. 3. Full advantage was taken of symmetry
and as a result only one quarter of the double edge-notched plate and one half of the single
edge-notched plates were considered in the analysis. Several values of the ratio of notch
depth to plate width were considered.

The form of the special element adopted was rather crude. Only five nodes on the
inner and on the outer boundaries were employed. This arrangement is shown in Fig. 4.
Due to the symmetry, only two terms in the Us matrix of generalized displacements were
needed. These were the rigid body displacement in the x direction and K I the stress intensity
factor for mode 1. The size of the total stiffness matrix for the special element was thus
only 12 by 12. The special element was contained in the relatively coarse mesh shown in
Fig. 5. This mesh consisted of standard finite elements with linear displacement fields
along the element edges. The results for the computer analysis of the three cases for various
values of the ratio of notch depth to plate width are presented in Figs. 6-8. In these figures
the computed results are compared with the results reported in the literature by various
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FIG. 3. Specimen configurations used for comparison between proposed method and published results.
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CRACK TIP

FIG. 4. Special element used for K, computation symmetrical specimens.

authors (Beukner [1], Bowie [2], Gross and Srawley [3] and Gross et al. [4]). Despite the
crude form of the special element the results are as accurate as is normally required. It
might be noted that the computer execution time for each result was only 12 sec on a
CDC 3600 computer.
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FIG. 5. Finite element mesh containing special element (drawn for ajW = 0·4).
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FIG. 6. Stress intensity factor vs. ratio ofcrack width to half specimen
width, for a double edge notched specimen in tension.

FIG. 7. Stress intensity factor vs. ratio of crack to specimen width
for single edge notched specimen in tension.
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FIG. 8. Stress intensity factor vs. ratio of crack to specimen width for single edge notched specimen in
bending.

4. CONCLUSION

The special element method presented in this paper is a practical and efficient procedure
for determining stress intensity factors for a wide range of structural problems. Not only
is the method computationally efficient but also it allows the solution of problems outside
the scope of present techniques. Any form of notch singularity or notch angle can be
considered, provided stress and displacements along the boundary of the notch can be
defined numerically. Variations in thickness, point loads and many such complications
may be included in this method without difficulty.
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A6cTpaKT-B pa60Te JlaeTClI CneUl1aJlbHblH MeTOJl KOHe'lHorO :meMeHTa, JlJlll paC'IeTa <!>aKTOpOB I1HTeHCI1­

BHOCTI1 HanplllKeHI1H. CneUl1abHblH KOHe'leHbIH 3JleMeHT COCTOI1T 113 JlByX 06J1aCTeH. OnpeJleJllllOTClI

paCnpeJleJleHl1l1 HanplllKeHI1HI1 Jle<!>OpMaUHH BO BHYTpeHHOH 06JlaCTI1, B Bl1.o.e nOJlll CI1HrYJlllpHbIX HanplleHI1H,

CB1I3aHIIOrO C BepWHHOH HaJlpe3KI1. BHeWHlIli 06JlaCTb CneWlaJlbHOrO 3J1eMeHTa 3aJlIO'IaeT 06blKHOBeHHbie

KOlle'lllble )JleMeHTbl. KOTopble npl1cnOC06J1eHbl JlJlll YJlOBJleTBopeHHlI HeKOTopblM YCJlOBl1l1M POBHOBeClIlI

11 COBMeCTI1MOCTI1, Ha rpaHI1Ue MelKJlY JlBYMlI 06aCTlIMI1. 3TOT MeTOL\ BnOllHe 3<!>Q>eKTHBHbIH, 6J1aronapll

'IeMy MOlKHO nOJlY'II1Tb peWeHl1e 3aJla'll1, BHe paMOK npl1MeHlIeMblX B HaCTOlllUe BpeMlI cnoc060B.

BalKHOCTb npouecca nOJlTBeplKJleHa nYTel1 cpaBHeHl1l1 C ony6J1I1KoBaHHb1MI1 peWeHl1l1MI1 JlJlll HeKOTopblX

npOCTblX CJlY'laeB nJlOCKHX HapPlilKeHI1H.


